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PORE EXPANSION IN PLASTIC METALS UNDER SPALL 

V. K. Golubev UDC 539.374 

The necessity to construct adequate models of material rupture under intensive dynamic 
loads of shock-wave nature requires a more complete comprehension of the regularities of 
generation and growth of individual damage during rupture. It is shown [I] that in the case 
of plastic metals such as aluminum and copper the damage being formed during spall is in the 
form of pores whose shape is almost spherical. On the basis of experimental investigations, 
an empirical regularity is proposed in [i] that describes the growth of an individual pore, 
the so-called law of viscous growth. Estimates are made in [2] for pores expanding in a 
plastic medium, while a kinematic model based on dislocation mechanics is proposed in [3] to 
describe pore growth. The model of a viscoplastic medium is used in [4] to model the spall- 
ing rupture of copper, where it is shown that satisfactory agreement between the results of 
experiment and computation is achieved for an extremely low value of the viscosity. 

An experimental investigation of the spalling rupture of a number of metals in a broad 
temperature range was performed in [5]. Results of a metallographic analysis of the tested 
specimens, presented in [6] and subsequent papers, showed that if the viscous nature of the 
spalling rupture is inherent for @lastic metals with fcc lattice in the whole temperature 
range investigated, then the viscous nature of rupture is observed under elevated test tem- 
perature conditions for metals with other types of crystalline structure. For example, char- 
acteristic spall damage in certain:metals is presented in Fig. I: a) lead, T = O~ P = 
0.69 GPa, x200; b) nickel, T = 0~ P = 3.14 GPa, x800; c) titanium alloy, VTI4, T = 800~ 
P = 4.25 GPa, x500; d) Armco iron, T = 800~ P = 2.74 GPa, x500. 

The behavior of plastic metals under intensive high-velocity plastic strain conditions 
is described most correctly within the framework of the model of a viscoplastic medium. In 
this paper the problem of examining the expansion of an isolated pore in a viscoplastic medi- 
um under the effect of a short tension pulse is posed, viz.: determine the influence of the 
fundamental model parameters (viscosity and yield) on the nature of spherical pore expansion. 
The comparison of such computed results with the results of an experimental observation of 
the characteristic dimensions of pores being formed during spall can be the basis for deter- 
mining the viscosity of metals under spalling rupture conditions. 

The problem of pore expansion in a viscoplastic medium can be formulated analogously to 
the problem of its collapse [7]. At a certain time let a pressure pulse P(t) be applied to 
the outer surface of a spherical cell of radius bo with inner cavity of radius ao. We con- 
sider the material of the medium incompressible; consequently, the subsequent motion of the 
substance is related uniquely to the expansion of the inner cavity. The equation of motion 
under radial symmetry conditions has the form 
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Fig. 1 

~(a~iat § ~aSa.) = a%/ax-F 2(% -- %)/z, ( i )  

where a x and a m= o 0 are the stress tensor components, x is the spacing from the center of 
symmetry, and v is the velocity of radial motion. The condition for continuity of the normal 

stress tensor components 

~ ( b , t ) = P ( t ) ,  ox(~,O= O, (2) 

is satisfied on the outer surface of the spherical cell and the wall of the cavity, where b 
and a are the running radii of the outer surface of the spherical cell and the inner cavity. 
the governing equation of a viscoplastic medium is taken in the form 

o x -- o m = --Y + 2D(adax -- y/x), (3) 

where Y is the yield point and q is the viscosity coefficient. The velocity field in an in- 
compressible medium is defined completely by the velocity of the cavity wall 

v = (aalat)~/xt (4) 

Substituting (3) and (4) into (I) and integrating with the boundary conditions (2) taken 

into account, we obtain the following equation 

- P ( t ) = - 2 Y l n  ~ ~ba ~ + P [  2--Y--\~] - b 

J 

This differential equation with the initial conditions a(0) = ao, da/dt(0) = 0 in which b is 
related to a by the incompressibility condition b 3 -- a 3 = b3o -- a3o, describes the change of 
the cavity radius in time. At the initial instant the velocity is da/dt = 0, while the ac- 
celeration is d=a/dt 2 > 0 upon satisfaction of the condition P(t) > P, = 2Y in (bo/ao). 
Therefore, the quantity P, is the effective yield point of a porous plastic medium under con- 
ditions of multilateral tension or compression. The pressure pulse acting on the outer sur- 
face of the cell is taken to have the rectangular shape P(t) = Po[H(t) -- H(t -- T)], where H(t) 
is the Heaviside unit function, and T is the loading time. For convenience in analyzing the 
problem we introduce dimensionless variables and parameters 
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Then (5) can be reduced to the form 

r(1 z ) - ~ = p l H ( ~ ) - - H ( * - - t ) ]  v ln  I i 2. - -  z ~ _ ~ _  2 ( l _ z ) _ y ( t - - z  4) (6 )  

The initial conditions for this equation have the form r(O) = l, dr/dT(O) = 0. 

We consider the solution of the problem formulated in application to the conditions being 
realized during spalling rupture of plastic metals. To do this, we analyze (6) in application 
to the results of a specific test (for instance, test 872 from [i]). The minimal radius of 
the pores being formed is assumed to equal 0.5 ~m, the negative pressure in the spall zone is 

Po = 1.12 GPa, and we take the time of elastic wave circulation in the impactor T = 0.75 psec 
as the characteristic loading time. It is obtained in [i] that the pore density N with maxi- 
mal radius 30 pm is 4.104 cm -3 These most coarse pores indubitably occur at the very ini- 

tial loading stage and grow during the whole period T in contrast to the large number of shal- 
low pores that are formed in the later stages of the loading. In this case, the estimate of 

the spherical cell size yields b0~I/(2~N)~150~m. Taking the value 0.06 GPa for the 
yield point of aluminum, we can at once obtain the magnitude of the effective yield point of 
the material with initial pore~distribution under multilateral tension conditions that are 

similar to those being realized in the spall zone, P, = 0.68 GPa. We also obtain the values 
of the parameters needed, such as p = 9.29.105, y = 9.96.10 ~, B = 300. To determine p, we 
initially take the value ~ = 20 Pa,sec used in [i]. In this case, U = 8.89.10 ~. The maxi- 
mal value of r is 60 and the value of z does not exceed 0.2 in this case; consequently, the 
third and fourth powers of z can be neglected in (6) as compared with one. Therefore, the 
pore expansion p for the spherical cell under consideration will be described by an equation 
of the form 

( r J - - 7  d-~ : = p -  " - ~ - - - ' - f - d ~ - -  - - 2 - - ~ } \ d ~ } .  (7)  

The initial short-range and substantially nonlinear stage of pore expansion is characterized 
for r = i and dr/dT = 0 by an extremely large initial value for the acceleration d2r/dz 2 = p -- 
y in B = 3.61"105 , while its subsequent expansion to the radius r = 60 during the time z = 1 
occurs in a quasistationary regime for which the terms containing the acceleration and the 
square of the velocity are small compared to the other terms in (7). 

To consider the initial nonstationary stage of the expansion in (7), we neglect the last 
inertial term, the difference of r from l, as well as the quantity r/B as compared with one. 
In this case (7) becomes 

d2r/d% 2 -[- ~ tdr /dT  = p - -  g In [~. 
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Integrating, we obtain for the pore velocity and radius 

- - l n ~  p - - l n ~ (  1 dr p - -  in ~ (1 -- e-U~), r = 1 + p ~t ~ ~ ' - -  e-Ur) 
dr -- ~t ~t" 

I t  i s  s e e n  f r o m  t h e  s o l u t i o n  o b t a i n e d  t h a t  t h e  p a s s a g e  t o  t h e  q u a s i s t a t i o n a r y  r e g i m e  o f  e x -  
p a n s i o n  o c c u r s  by  a k i n d  o f  t r a n s i e n t  w i t h  t h e  t i m e  c o n s t a n t  1/V = 10 - 5 ,  w h i l e  t h e  i n i t i a l  
v a l u e  o f  t h e  p o r e  v e l o c i t y  i n  t h e  q u a s i s t a t i o n a r y  s t a g e  e q u a l s  (p  -- y I n  B ) / ~  = 4 .  

I n  t h e  n e x t  q u a s i s t a t i o n a r y  s t a g e  we l e g i t i m a t e l y  n e g l e c t  b o t h  t h e  i n e r t i a l  t e r m  and 
t h a t  c o n t a i n i n g  t h e  a c c e l e r a t i o n  i n  ( 7 ) .  T h i s  r e s u l t s  i n  a f i r s t - o r d e r  e q u a t i o n  t o  d e s c r i b e  
t h e  p r o c e s s  o f  p o r e  e x p a n s i o n  w h i l e  t h e  a s s u m p t i o n s  t a k e n  r e m a i n  c o r r e c t :  

dr p - -  !I In (~,"r) (8) 
r.  

Integrating, we obtain 

/ 'd 

D i f f e r e n t i a t i n g  (9)  t w i c e ,  we a l s o  o b t a i n  an e x p r e s s i o n  f o r  t h e  p o r e  v e l o c i t y  and a c c e l e r a -  
t i o n  i n  t h i s  s t a g e  o f  t h e  e x p a n s i o n  

dr P - - i / I n ~ e x p  / ;~ * I  r(~);  ( i 0 )  
~ ( r ) -  ~ k~ ~ ] 

d~ r {! @ (p -- y in [3) exp [ P } dr 

d-- 7 (T) = ~t ~ (~)" (11)  

Substituting the values of the known parameters and the value r = 60 for ~ = i into (9), we 
determine the value ~ = 1.32.105 satisfying these data. The dependences (9)-(11) obtained 

are presented in Fig. 2, where curves 1-3 correspond to them. A more exact expression can 

be obtained for the first integral of (7) with the terms initially neglected taken into ac- 

count. An analysis performed for the pore expansion in the quasistationary stage showed that 
the terms being neglected are close in magnitude, i.e., rdar/dT 2 ~ (dr/dT) =. Therefore, the 

first integral of (7) can be represented more correctly by the formula 

d T - - - - 4 r  q- ~4r] t ' ~ -  p--rgln . (12)  

The i n t e g r a l  c u r v e s  1,  2 c o r r e s p o n d i n g  t o  (8) and (12)  a r e  p r e s e n t e d  i n  F i g .  3.  They  show 
t h a t  t h e  d i v e r g e n c e  s t a r t s  f o r  r -~ 20 ,  w h i c h  c o r r e s p o n d s  t o  T = 0 . 8 .  E q u a t i o n  (12)  i s  n o t  
s o l v e d  a n a l y t i c a l l y ,  b u t  an  e x a m p l e  i s  p r e s e n t e d  i n  F i g .  3 f o r  an  e l e m e n t a r y  g r a p h i c a l  i n t e -  

r 1 S' g r a t i o n  o f  t h e  e x p r e s s i o n  dr---7--dr=l f o r  c a s e s  1,  2 ,  w h e r e  r l  i s  t h e  p o r e  r a d i u s  f o r  ~ = t .  
1 ~ (r) 

The i n t e g r a n d  c u r v e s  3 and 4 s h o u l d  c o v e r  an i d e n t i c a l  a r e a ,  and t a k i n g  a c c o u n t  o f  t h i s  c o n -  
d i t i o n  shows t h a t  a r e d u c t i o n  i n  t h e  v a l u e  o f  r l  t o  n o t  m o r e  t h a n  56 o c c u r s .  

F o r  r > 1 a c e r t a i n  f u r t h e r  i n e r t i a l  e x p a n s i o n  o f  t h e  p o r e s  s t i l l  o c c u r s .  I n  t h i s  c a s e  
(6) w i t h  t h e  p o w e r s  o f  z t o  be  n e g l e c t e d  t a k e n  i n t o  a c c o u n t  w i l l  h a v e  t h e  f o r m  

d;r ~ ~t dr -- 2 --~- \ ~ ] . 
r i-- ~ = - - y  in r -- r d ~ -  

We obtain the initial conditions from (9) and (i0) for r = i. The last term in the equation 

is both the smallest in magnitude and the most progressively diminishing as dr/dT is dimin- 
ished. Also taking into account that the value of r should not change substantially, we 

estimate the maximal pore radius r2 by integrating the linear equation 

r 1 I-- ---- In .... dT~ - - - - U  r l  r i d a '  

T h e  s o l u t i o n  o f  t h i s  e q u a t i o n  shows t h a t  t h e  p o r e  r e m a i n s  a t  t h e  r a d i u s  r a  = 65 up t o  t h e  
time T ~- 1.04. 
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Therefore, the estimates made show that in a specific very typical case (9) describes 
the nature of the isolated pore expansion in a plastic metal being modeled by a viscoplastic 
medium, with sufficient correctness. The effect of the reduction in the magnitude of r, as- 
sociated with taking account of small terms in (7), turns out to be insignificant and compen- 
sated, with a high degree of accuracy, by the effect of an increase in r in the retardation 

stage. 

It is interesting to note the separate influence of the strength y and viscosity ~ param- 
eters on the nature of the pore expansion. In the case of purely viscous resistance to pore 
expansion, i.e., for y = 0, we obtain for the quasistationary expansion stage by integrating 

(8) 

7' = e (p ~t)~ 

This dependence is shown in Fig. 2 by curve 4 within the limits in which it still remains 
real. For high values the examination of pore expansion can be performed by a method analo- 
gous to that used to obtain the dependence (12). The effective value of the parameter 
needed to describe the experimentally observable pore dimension is 2.27.105 , and taking ac- 
count of the pore retardation stage will result in a still more substantial increase in p. 
In the case of no viscous resistance to pore expansion, i.e., for ~ = 0, EQ. (7) can be inte- 
grated under the condition of neglecting the quantity r/~ as compared with one, which yields 

Within the limits of variation of r from 2 to 30, an increase in the velocity occurs from the 
value dr/dm = (2/3)(p -- y in ~) of not more than 1.5 times. Consequently, a pore expansion 
trajectory can be constructed approximately under the conditions of ideal plasticity by using 
the constant value presented for the velocity. The dependence r(T) constructed in this man- 
ner, which is its lower bound as r increases, is shown by line 5 in Fig. 2. 

An estimate of the rise in temperature of the material on the inner surface of the 
expanding pore can be made i~ the same way. For instance, in the case of pure plasticity 

AT=2Flnt~)lP<~2iU~ where a, is  the maximum pore radius, and c is the specific heat. Tak- 

ing account of viscous dissipation results in the fact that the surface temperature can ex- 

ceed the melting point. 

One of the important and still unclarified questions remains the question of the minimal 
size of the microscopic pores being formed. In [8], which is a continuation of the investiga- 
tion started in [i], it is mentioned that microdamage is observed for a magnification of x!00. 
Hence, the value of the minimal pore radius of 1 ~m is apparently taken quite conditionally. 
Observation of the nature of spalling rupture in plastic metals investigated in [5] and subse- 
quent papers displayed the presence of pores with a minimal radius of about 0.5 ~m for a mag- 
nification of xl000. This value is close to the limit of confident resolution of the optical 
microscope, although pores of minimal dimension can still be distinguished sufficiently clear- 
ly from microscopic inclusions at this magnification. One of the sources of pores being 
formed is apparently the exposure of microcracks generated at stressed bulk dislocation clus- 
ters such as dislocation cells and balls. The dimensions of these microcracks attain the 
dimensions of dislocation clusters [9]. A cellular dislocation structure is formed earlier 
in metals not subjected to preliminary annealing because of the preceding plastic strain dur- 
ing the technological processing. The dislocation structure occurring in such metals as 
nickel and copper under shockwave loading is characterized by dislocation cell dimensions of 
0.15-1.4 ~m [i0]. The fundamental source of the pores being formed together with the struc- 
tural inhomogeneities are apparently particles of foreign impurities and inclusions that are 
present in large quantities in technical metals and especially in alloys. 

The expression (9) obtained for the radius of the expanding pore in the case of small- 
ness of the ratio y/D as compared with one or in the case of small r goes over into the ex- 

pression 

r (T) =exp \{~ -- ~[]n B), (13) 
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which corresponds exactly to that obtained in [i] on the basis of the so-called law of vis- 

cous growth. The meaning of the concept used in [i] of the limit of pore growth ogo which is 
none other than the yield point of the medium with initial distribution of minimal size pores 
under multilateral tension conditions, becomes comprehensible. 

To develop viscous spalling rupture in plastic metals, it is necessary that the negative 
pressure applied exceed the yield point of the porous medium with initial distribution of 

1 
minimal size p6res p, = 2Y~ In--_ Analysis of the results of [i, 8] as well as a metal- 

2 ~ ' N  a o 

lographic study of the specimens tested in [5] yield the characteristic values 0.5 ~m and i0 ~ 
cm -s for ao and N. Therefore, the negative pressure in the spall zone should exceed the 
value of P,, which is 12.3Y in this case. Variation of the quantity N within the limits 102- 

i05 results in a change in P, within the limits (13.8-I0.8)Y. The loading level correspond- 
ing to the generation of micropores in a sufficient quantity can be above the level of P, 
and manifests an explicit time dependence (see [ii], for example). 

We now examine the possibility of determining the viscosity of metals under conditions 
corresponding to viscous spalling rupture due to pore growth. On the basis of (13), an upper 
bound can be found at once for the parameter ~ = p -- y in B. In the case of aluminum the up- 
per bound is ~ = 3.61.i0 s which yields the upper bound for the magnitude of the viscosity 

= 81.2 Pa.sec. The value ~ = 1.32.105 obtained on the basis of an analysis of individual 
pore expansion corresponds to the viscosity of aluminum n = 30 Pa~ The magnitude of the 
viscosity in certain other metals can be estimated in a similar manner. To do this we solve 

(9) for n by substituting the necessary parameters and reducing to dimensional form 

2YT 

( 1 
2Y In 

4 In i -]- ------ 

We illustrate the possibility of determining the quantity D by several examples. For copper 
(test $24 from [8]), for Po = 1.8 GPa, Y = 0.06 GPa, T = 0.25 ~sec, ao = 0.5 vm, a: = 45 ~m, 
N = 2.104 cm -s we obtain ~ = 20 Pa.sec. For lead with P0 = 0.6 GPa, Y = 0.01 GPa, T = 1.3 
Dsec, ao = 0.5 Hm, al = 50 ~m, N = l0 s cm -s we obtain ~ = 38 Pa~ For nickel with Po = 
3.14 GPa, Y = 0.2 GPa, T = 1.3 ~sec, ao = 0.5 Hm, al = 20 ~m, N = 104 cm -3 we obtain ~ = 113 
Pa.sec. For the titanium alloy VTI4 at a 800~ temperature and with Po = 3.6 GPa, Y = 0.I 

GPa, ao = 0.5-1 Hm, al = 60 ~m, N = 104 cm -s we obtain ~ = 96-230 Pa.sec, depending on the 

value of ao. The value ao = 1 ~m is taken since it is difficult to observe pores with radius 
less than 1 ~m in a specific structure of the alloy VTI4 (see Fig. ic), and the value ao = 
0.5 ~m is common for a whole series of previous materials and apparently more acceptable in 
the interests of a comparative analysis. 

The values obtained for the metal viscosity compare well with results obtained for other 
test conditions. The most satisfactory agreement between experimental and theoretical re- 
sults is observed in [12] for ~ = 20 Pa.sec for the shock-wave compression of porous aluminum. 
The upper bounds for the viscosity of aluminum and copper, obtained from measuring the pro- 
file of strong shock fronts, are i00 and 300 Pa~ in [13]. Estimates of the strain rate 

made for these conditions yield ~10 s sec -I while estimates of the mobile dislocation den- 
sity Pd yield ~109 cm -2. Under pore expansion conditions the estimates of ~ yield ~107 sec -I. 

Estimates can also be made for the mobile dislocation density Pd = B/~b 2, where B is the 
stagnation factor and b is the Burgers vector. The mean value of B for metals with fcc lat- 
tice is ~4.10 -5 Pa-sec [14], which yields ~109 cm -2 for the estimate of Pd" 
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BENDING OF AN ANISOTROPIC PLATE CONTAINING 

AN ANISOTROPIC ELASTIC INCLUSION 

M. I. Zadvornyak and T. L. Martynovich UDC 539.3 

A thin plate of thickness h is considered that has a curvilinear hole into which is 
soldered an elastic body made of another material. The plate and the inclusion have recti- 
linear anisotropy with respect to the elastic properties of the material and at each point 
have a plane of elastic symmetry parallel to the median plane xOy. The principal elasticity 
directions for the plate and inclusion are at an angle @ (Fig. i). The line L dividing the 
regions S(~) and S(2) corresponding to the different anisotropic materials is described by 
an equation of the form 

( ) t x + iy = R ~o + ~ ck,,-~,o , Y,  ~l c ,  10" < ~. (1 )  
h = l  h = l  

Along line L between regions S (a) (~ = i, 2), the conjugation conditions should apply: 

c)H(1) r~H (~) 

8s c--77--s ' 

W(i) = W(2), OW(i) OW(2) 
On On 

(2) 

while in parts of the plate remote from the inclusion the bending and torsional moments are 
bounded: M~x = MI, M~y = Mz, M=xy = H12. There are no external localized forces and dis- 
tributed loads normal to the median plane in the regions S (~) (~ = i, 2). Here n and T are 
the normal and tangent to line L. 

In the analytic solution, the region S (z) will be considered as infinite (the perturba- 
tion in the elastic state of the plate due to the inclusion does not attain the outer bound- 
ary of the plate). 

Lvov. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6, pp. 
165-171, November-December, 1983. Original article submitted August 23, 1982. 

920 0021-8944/83/2406-0920507.50 �9 1984 Plenum Publishing Corporation 


